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Abstract

Efference copy is a cognitive mechanism argued to be critical for initiating and monitoring speech: 

however, the extent to which breakdown of efference copy mechanisms impact speech production 

is unclear. This study examined the best mechanistic predictors of non-fluent speech among 88 

stroke survivors. Objective speech fluency measures were subjected to a principal component 

analysis (PCA). The primary PCA factor was then entered into a multiple stepwise linear 

regression analysis as the dependent variable, with a set of independent mechanistic variables. 

Participants’ ability to mimic audio-visual speech (“speech entrainment response”) was the best 

independent predictor of non-fluent speech. We suggest that this “speech entrainment” factor 

reflects integrity of internal monitoring (i.e., efference copy) of speech production, which affects 

speech initiation and maintenance. Results support models of normal speech production and 

suggest that therapy focused on speech initiation and maintenance may improve speech fluency for 

individuals with chronic non-fluent aphasia post stroke.
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Introduction

Contemporary models of speech production suggest that an internal representation of the 

speech plan, known as an efference copy, predicts speech behaviour (Guenther, Ghosh, & 

Tourville, 2006; Hickok, Houde, & Rong, 2011; Hickok, 2015; Hickok & Poeppel, 2007; 

Houde & Chang, 2015; Houde & Nagarajan, 2011). An efference copy is a replica of the 

CONTACT: Lynda Feenaughty, Lynda.Feenaughty@memphis.edu. 

Disclosure statement
No potential conflict of interest was reported by the authors.

ORCID
Alexandra Basilakos, http://orcid.org/0000-0003-0053-1082
Brielle Stark, http://orcid.org/0000-0002-7001-8324

HHS Public Access
Author manuscript
Cogn Neuropsychol. Author manuscript; available in PMC 2018 March 02.

Published in final edited form as:
Cogn Neuropsychol. 2017 September ; 34(6): 333–346. doi:10.1080/02643294.2017.1394834.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://orcid.org/0000-0003-0053-1082
http://orcid.org/0000-0002-7001-8324


speech motor plan and is hypothesized to generate forward predictions of auditory targets to 

be compared to actual feedback during speech execution (Guenther et al., 2006; Hickok, 

2015; Hickok et al., 2011). Although models of speech production differ with regard to the 

precise nature of efference copies, feedforward and auditory feedback control mechanisms 

including efference copies have long been acknowledged to be crucial for the initiation and 

monitoring required for fluent speech (Guenther, 2016). In this paper, we investigate the 

extent to which breakdown of efference copy mechanisms may account for non-fluent 

speech in stroke survivors.

The directions into the velocities of the articulators (DIVA) model of speech production 

describes interacting feedforward and feedback control systems for speech motor control 

(Guenther, Hampson, & Johnson, 1998). According to this model, an efference copy, 

consisting of a set of feedforward motor commands that project from motor regions, carries 

internal auditory target information to the posterior auditory cortex, predicting auditory 

consequences of the spoken message (Guenther et al., 2006; Guenther et al., 1998). If an 

incoming auditory signal is outside the parameters of the predicted auditory target, then 

corrective motor plans are generated to remedy the perceived discrepancy between the actual 

and projected targets. If feedforward projections to primary motor cortex (i.e., from a speech 

sound map to an articulator map) are damaged, this probably impacts programming required 

for speech, because the appropriate motor commands cannot be accessed. However, such 

damage may also impair feedback control, because feedforward projections carry sensory 

targets for speech sounds (relayed from ventral premotor cortex to higher order auditory and 

somatosensory brain regions). Without these sensory targets, errors in initiation or actual 

production cannot be detected via auditory or somatosensory feedback, thus eliminating 

sensory feedback-based corrective motor commands (Guenther, 2016). Consistent with the 

DIVA model, research has shown that speech production is dependent on real-time auditory 

and proprioceptive feedback (e.g., Guenther, 2006).

State feedback control (SFC) models also integrate efference copies by means of 

feedforward and feedback control mechanisms (Hickok, 2012; Hickok et al., 2011; see also 

Houde & Nagarajan, 2011; Tian & Poeppel, 2010). According to SFC models, phonological-

level representations are separated into internal motor targets and auditory consequences. 

Speech acts initiate a motor speech plan and an exact efference copy of that plan providing 

sensory targets at the level of proprioception and audition. Online sensory feedback control 

is attributed to efference copy, as well as an internally maintained representation of estimates 

of the current dynamical vocal tract state (Hickok et al., 2011). More recently, efference 

copies have been proposed to be part of planning a speech motor act prior to execution, 

rather than after the initiation of a motor command (Hickok, 2015). Similar to the DIVA 

model, SFC models imply that problems with efference mechanisms would be likely to 

impact naturally occurring feedforward and feedback processes required for the initiation 

and monitoring of speech production. Both DIVA and SFC models consider efference copies 

to be important for fluent speech production, and therefore these and other similar models of 

speech production do not necessarily conflict with one another in this respect.

The DIVA and SFC models of speech production are broadly consistent with classic 

neurocognitive models of language that include auditory–motor integration (e.g., 
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Geschwind, 1979; Lichtheim, 1885; Wernicke, 1874) as well as with early psycholinguistic 

models of language production (e.g., Dell, Schwartz, Martin, Saffran, & Gagnon, 1997; 

Levelt, Roelofs, & Meyer, 1999). For example, Levelt et al.’s (1999) process of phonetic 

encoding yields a gestural score that is subsequently executed by the articulatory 

mechanism, analogous to feedforward control. Additionally, self-repairs during spontaneous 

speech provide evidence of an internal mechanistic process. Levelt (1989) attributed 

immediate corrections of erroneous initial syllables of a word to the phonetic plan (“internal 

speech”), but did not offer insight regarding a mechanism responsible to detect errors prior 

to speech production. Additionally, an internal monitor of the phonological plan, which 

relies on the same mechanism as that for external monitoring of articulated speech, has been 

postulated (Levelt et al., 1999). Hickok (2015) suggests that repeated attempts to correct for 

phonemic speech errors are due to mismatches between the efference copy and the actual 

sensory feedback, as evidenced by studies from the aphasia literature (e.g., Baldo, 

Klostermann, & Dronkers, 2008; Goodglass, 1992).

As discussed above, efference copy is a cognitive mechanism argued to be crucially 

important for initiating and monitoring speech. Recent evidence suggests that the generation 

of efference speech copies relies on the left inferior frontal gyrus (e.g., Niziolek, Nagarajan, 

& Houde, 2013; Wang et al., 2014) and that structures at the parietal-temporal junction serve 

to integrate sensorimotor transformations (Hickok, 2015). Thus, damage to these regions 

would impair one’s ability to generate and use an efference copy for speech motor control. If 

fluent speech relies on each motor action to be initiated by a motor plan with simultaneous 

generation of an internal copy against which the sensorimotor consequences can be 

compared in real time, then individuals without the ability to generate or access an efference 

copy would produce less fluent speech (Fridriksson, Basilakos, Hickok, Bonilha, & Rorden, 

2015; Fridriksson et al., 2012).

One way to clarify to what extent breakdown of efference copy mechanisms impact speech 

fluency is by studying individuals with focal neurological damage, including stroke 

survivors. Investigating speech fluency in stroke survivors with or without damage to left 

inferior frontal gyrus and temporoparietal junction may elucidate a mechanism such as 

efference copy, responsible for speech fluency. Non-fluent speech is one of the most salient 

and troublesome symptoms of Broca’s aphasia, an acquired language disorder affecting at 

least 20% of chronic stroke survivors (Engelter et al., 2006). Non-fluent speech production 

is characterized by short, interrupted utterances that are articulated with effort and abnormal 

prosody, and may be grammatically incorrect. In contrast, fluent speech is characterized by 

long, uninterrupted, and often grammatical or paragrammatic strings of different words that 

are articulated without effort. These speech production characteristics vary in expression and 

independence along a severity continuum (Goodglass, 1993). Accordingly, many speech 

production features contribute to perceptions of speech fluency (Gordon, 1998; Park et al., 

2011). Therefore, the idea of efference copy as a primary cognitive mechanism responsible 

for the flow of speech has important clinical and theoretical implications. For example, 

determining the cognitive mechanisms accountable for non-fluent speech is important to 

guide assessment and therapeutic strategies targeting impaired speech fluency. In this 

manner, results may also inform neural models of normal speech production.
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It must be noted that speech fluency is a multidimensional construct with many speech 

production features contributing to the perceptions of speech fluency (Gordon, 1998; Park et 

al., 2011). Evaluation of speech fluency therefore requires consideration of several aspects 

of speech production. The Western Aphasia Battery (WAB; Kertesz, 1982, 2007) is one of 

the most frequently used tests to identify the presence and type of aphasia in neurological 

populations. The WAB includes several sub-tests, including a qualitative rating scale that can 

be used to evaluate speech fluency based on a spontaneous speech sample and verbal picture 

description. According to the WAB manual, speech-language pathologists (SLPs) 

subjectively rate speech fluency based on perceptual impressions of sentence length and 

complexity, rate of speech, and the presence of paraphasias. Despite its widespread use in 

research and clinical settings, fluency scores obtained from the WAB do not provide specific 

insight regarding the nature of the impairment contributing to non-fluent speech. Poeck 

(1983) suggests that characterizing fluency by singling out one measure would not wholly 

represent a participant’s performance of speech. The idea that multiple metrics may better 

indicate speech fluency is also supported by perceptual studies that suggest that listeners 

gauge the flow of speech using multiple cues (Park et al., 2011). Various objective measures 

of speech production therefore also are used for evaluating speech fluency, including global 

speech timing measures (e.g., speech rate) and measures without the timing component (e.g., 

phrase length, word count; e.g., Benson, 1967; Feyereisen, Verbeke-Dewitte, & Seron, 1986; 

Goodglass & Kaplan, 1972; Goodglass, Quadfasel, & Timberlake, 1964; Gordon, 1998; 

Yorkston & Beukelman, 1980).

Previous aphasia research investigating cognitive–linguistic abilities and speech fluency has 

shown that impaired lexical, syntactic, phonological, and semantic processes play a role in 

less fluent speech (e.g., Drummond, Gallagher, & Mills, 1981; Lambon Ralph, Snell, 

Fillingham, Conroy, & Sage, 2010; Wayland & Taplin, 1982). In addition, non-fluent speech 

associated with Broca’s aphasia has been hypothesized to reflect participants’ inability to 

generate an efference copy (Fridriksson et al., 2015; Fridriksson et al., 2012). Namely, 

patients with damage to the left inferior frontal gyrus, especially pars opercularis, speak 

more fluently when mimicking an audio-visual speech model in real time (speech 

entrainment) as indexed by an increase in the number of different words produced per 

minute during speech entrainment compared to spontaneous speech (Fridriksson et al., 2015; 

Fridriksson et al., 2012). These results suggest that these participants are not incapable of the 

articulations themselves, but that they may lack an online model or efference copy, to which 

they can match speech production. The external audio-visual speech model provides that 

missing online model, enabling more fluent speech production (Fridriksson et al., 2012; 

Hickok et al., 2011). However, the relationship between non-fluent speech and the integrity 

of the efference copy, as reflected by non-fluent speakers’ responses to speech entrainment, 

has yet to be firmly established.

The purpose of this study therefore was to investigate the relationship between speech 

fluency and participants’ performance on multiple speech and cognitive–linguistic 

mechanistic predictor measures, including response to speech entrainment (i.e., speech 

entrainment response), which could elucidate the cognitive mechanism responsible for non-

fluent speech. Rather than using subjective fluency ratings obtained from the WAB, 

principal component analysis (PCA) with varimax rotation was conducted on five objective 
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measures of speech production to determine a primary “speech fluency” factor that 

accounted for the maximum amount of shared variance among all speech production 

measures. The current study was not a perceptual study; listeners were not asked to judge 

speech fluency. Thus, referenced “speech fluency” benefits during speech entrainment 

compared to spontaneous speech may not be associated with listeners’ auditory perceptual 

judgments of speech fluency. While earlier aphasia studies investigating speech fluency have 

employed data reduction techniques (e.g., Vermeulen, Bastiaanse, & Van Wageningen, 1989; 

Wagenaar, Snow, & Prins, 1975), findings from these prior studies are unclear due to 

methodological concerns (Feyereisen, Pillon, & Partz, 1991). Similar statistical techniques 

also have been used in related aphasia studies examining structural brain damage in relation 

to speech and language impairment (e.g., Butler, Ralph, & Woollams, 2014; Fridriksson et 

al., 2016; Halai, Woollams, & Ralph, 2017; Lambon Ralph et al., 2010; Wang, Marchina, 

Norton, Wan, & Schlaug, 2013). Following the PCA, the first extracted principal component 

(i.e., Factor 1), which we propose is the best indicator of non-fluent speech in the study 

sample, was entered into a stepwise regression analysis as the predicted variable. A set of 

explanatory variables (i.e., mechanistic cognitive–linguistic predictor variables) was then 

used to determine the underlying mechanisms that give rise to non-fluent speech in chronic 

stroke.

Method

Participants

Data from 88 participants (Mage = 58 ± 10 years; 34 women, 54 men) who survived a left-

hemisphere stroke were selected from a larger dataset. All participants were at least six 

months post stroke, reported no history of neuropsychiatric disease or developmental 

language impairment, and varied in aphasia subtype presence and severity as indexed by the 

WAB (Kertesz, 1982, 2007). Participants were classified as follows: (a) anomic (22 

participants), (b) Broca’s (24 participants), (c) conduction (11 participants), (d) global (4 

participants), (e) Wernicke’s (8 participants), and (f) no aphasia (19 participants). Stroke 

survivors without aphasia were included in the study because current classification schemes 

may miss mild language impairments (Gordon, 1998). For all participants with aphasia, the 

mean WAB Aphasia Quotient (WAB-AQ) reflecting aphasia severity was 63.1 ± 23.6. The 

mean WAB-AQ for all patients without aphasia was 98.1 ± 1.0. WAB-AQ scores >93.8 

indicate language performance within normal limits. The Apraxia of Speech Rating Scale 

(ASRS; Strand, Duffy, Clark, & Josephs, 2014) was used to determine the presence and 

severity of apraxia of speech and dysarthria, because both apraxia of speech and dysarthria 

frequently co-occur with non-fluent aphasia variants. At the time of this study, ASRS scores 

were available for 20 of 28 participants with non-fluent aphasia variants and were 

characterized as follows: (a) Broca’s with apraxic speech characteristics (13 participants), 

(b) Broca’s with apraxic and dysarthric speech characteristics (5 participants), and (c) 

Broca’s without apraxic or dysarthric characteristics (2 participants). Although ASRS scores 

were not available for eight participants (e.g., ASRS was not completed), it is likely that at 

least mild apraxia of speech (AOS) and/or dysarthria was present for these participants, 

because AOS and dysarthria frequently co-occur with aphasia. AOS and/or dysarthria 
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severity ranged from mild to severe. Informed consent was obtained from all participants, 

and the Institutional Review Board at the University of South Carolina approved this study.

Speech fluency measures

Participants underwent a comprehensive assessment battery administered as part of a larger 

study. Speech fluency measures were obtained from picture descriptions (i.e., picnic scene) 

acquired during administration of the WAB (Kertesz, 1982, 2007). The picnic scene thus 

generated all five speech fluency measures obtained for use in the current study: (a) speech 

rate (syllables/second), (b) mean silent pause duration (seconds), (c) the number of silent 

pauses, (d) the number of syllables, and (e) the number of different words produced in a 

given speech sample. All measures are described in the following paragraphs. All 

participants described the picnic scene, which was visually displayed for two minutes on a 

computer screen or a printed version of the scene. Participants were encouraged to describe 

the scene using complete sentences until the two minutes had elapsed. Participants were 

audio–video recorded in a quiet room, and audio–video recorded speech samples were saved 

directly to a computer for offline acoustic analysis and orthographic transcription.

The entire duration of each speech sample was segmented into runs and pauses using speech 

analysis software, excluding intervals of examiner speech (Praat; Boersma, 2001). A speech 

run was defined as a stretch of speech bound by a silent pause greater than 200 ms (Tjaden 

& Wilding, 2004). Standard acoustic criteria were used to identify run onsets and offsets (for 

details see Feenaughty, Tjaden, Benedict, & Weinstock-Guttman, 2013). For each 

participant, the number of syllables for each speech run was tallied. Speech rate in syllables 

per second was calculated by dividing the total number of syllables by the total sample 

duration including articulation and pause time. Articulatory rate (syllables/second) was also 

calculated by counting the total number of syllables and dividing by the total articulation 

time. Syllables in neologisms and paraphasias were tallied, as well as repeated syllables. 

Syllable productions did not include filled pauses (i.e., uh, um). Syllable repetitions such as 

“ca-cat” were recorded as two syllables. Note that speech rate was used in the PCA, while 

articulatory rate was used in the stepwise regression analysis (see Data Analyses section). 

For mean silent pause duration, silent pause durations (i.e., greater than 200 ms) for the 

speech sample were averaged to yield an average silent pause duration for each participant. 

The number of silent pauses was also tallied to obtain a total number of silent pauses 

produced in a given speech sample.

In addition to the measures obtained from acoustic analysis, the total number of different 

words was counted for each speech sample to assess speech fluency without the timing 

component. All speech samples therefore were orthographically transcribed by trained 

research assistants and checked by a certified SLP with expertise in aphasia and 

transcription. Discrepancies were resolved through discussion and forced-choice agreement. 

All attempted word productions were tallied regardless of detected errors (e.g., paraphasias 

and neologisms). However, word counts excluded filled pauses as well as disfluency-related 

errors such as part word repetitions and sound prolongations. For example, syllable 

repetitions such as “ca-ca-cat” and prolongations such as “s-s-sand” were recorded as one 

word.
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Reliability

Intra-judge and inter-judge reliability of acoustic measures were calculated for 

approximately 10% of the speech samples. Ten samples were randomly selected, and 

measures were repeated. Average absolute measurement and standard deviation were used to 

index reliability. Pearson product correlation coefficients were also obtained (see 

Feenaughty et al., 2013). For intra-judge reliability, the absolute average measurement error 

and standard deviations were .10 syll s−1 (.12 syll s−1, where syll = syllable), .05 syll s−1 (.

05 syll s−1), and .08 s (.15 s) for articulatory rate, speech rate, and mean silent pause 

duration, respectively. Intra-judge Pearson correlations were all greater than .98. For inter-

judge reliability, the absolute average measurement error and standard deviation were .12 

syll s−1 (.07 syll s−1) for articulatory rate, .03 syll s−1 (.03 syll s−1) for speech rate, and .04 s 

(.07 s) for mean silent pause duration. Inter-judge Pearson correlations were all greater than .

96.

Intra-judge and inter-judge reliability for the total number of words, prior to consensus 

decisions, and the total number of different words was calculated for approximately 10% of 

the speech samples. Nine samples were randomly selected, and word counts were repeated. 

Pearson product correlation coefficients were used to index reliability. For intra- and inter-

judge reliability, correlation results for both word count measures were greater than 98%.

Mechanistic predictor variables

All participants underwent clinical speech and language assessment conducted by certified 

SLPs. Testing included the Philadelphia Naming Test (PNT; Roach, Schwartz, Martin, 

Grewal, & Brecher, 1996), the Pyramids and Palm Tree Test (PPTT; Howard & Patterson, 

1992), and the Argument Structure Production Test (ASPT_A) of the Northwestern 
Assessment of Verbs and Sentences (NAVS; Thompson, 2011). Each assessment was 

administered and scored according to standard test procedures. In addition, participants’ 

ability to mimic speech in real time (speech entrainment response) was compared to their 

spontaneous speech. Methodological details concerning a similar measure and the 

behavioural tasks were previously reported (Fridriksson et al., 2015; Fridriksson et al., 

2012). Briefly, the participant is asked to mimic in real time the speech that is heard through 

headphones and matched by the video of the speaker’s mouth shown on a laptop screen. Pre-

defined scripts are used in the entrainment session, which correspond to daily-life activities 

such as how to make scrambled eggs. Details to evaluate speech entrainment response are 

described below. Finally, articulatory rate was also obtained as described in the Speech 
Fluency Measures section, above. Each behavioural test is briefly described in the following 

sections.

Philadelphia Naming Test (PNT; Roach et al., 1996)

The PNT was used as a measure of lexical retrieval impairment. The PNT consists of 175 

pictured nouns that vary in frequency of occurrence and syllable length. Participants were 

instructed to name each picture displayed on a computer screen. Each picture was displayed 

for a maximum duration of 10 s. The total number of correct items named was used in the 

statistical analysis. Start–stop–restart naming attempts that were ultimately correct were not 
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classified as errors. Neologisms and semantic or phonological paraphasias, however, were 

considered errors.

Pyramids and Palm Tree Test (PPTT; Howard & Patterson, 1992)

The PPTT was used to assess non-verbal semantic processing. The PPTT involves pictures 

that are presented three at a time. After three practice trials, the participant is instructed to 

select one of two pictures that is semantically related to a target picture. The number of 

correct responses was used in the regression analysis.

Northwestern Assessment of Verbs and Sentences (NAVS; Thompson, 2011)

To evaluate grammatical processing, the Argument Structure Production Test (ASPT_A) of 

the NAVS was employed. This subtest presents participants with 32 action scenes, in which 

participants are provided with nouns and verbs that correspond to each scene. Participants 

were instructed to produce a sentence aloud using all words and pictures for each scene. 

Participant responses were orthographically transcribed to obtain the total number of 

sentences produced with no argument structure errors (i.e., verb and all argument structures 

present and produced in the correct order) for use in the regression analysis.

Speech entrainment response and articulation rate

To evaluate the participants’ response to speech entrainment, speech entrainment response 

was calculated as a change or difference in the average number of different words produced 

during the speech entrainment task, relative to the average number of different words 

produced during spontaneous speech. To obtain the average number of different words 

produced in spontaneous speech, all participants described three pictures including the 

picnic, the cookie theft, and the circus scenes from the WAB (Kertesz, 1982, 2007), the 

Boston Diagnostic Aphasia Examination (Goodglass, Kaplan, & Barresi, 2001), and Apraxia 
Battery for Adults–Second Edition (Dabul, 2000), respectively. Each picture was displayed 

for 2 minutes. Participants were instructed to describe what was happening in each picture 

and to try to talk in complete sentences. During the speech entrainment task, participants 

mimicked three short, videotaped scripts that included a speaker whose face was shown 

below the nose and presented on a computer screen and heard via headphones. These speech 

entrainment scripts varied in topic, length (i.e., between 48 and 58 words), and duration (i.e., 

approximately 40–45 s). The videos were presented using Psychtoolbox (Brainard, 1997; 

Kleiner, Brainard, & Pell, 2007; Pelli, 1997) and Matlab software (Mathworks, Inc., Natick, 

MA). Participants were instructed to mimic each model in real time. Participants’ recorded 

speech samples were saved directly to a computer for subsequent orthographic transcription 

by trained research assistants and were checked by a certified SLP. Discrepancies were 

resolved through discussion. Because recording times differed for each speech task, speech 

samples were adjusted by dividing the number of words by the sample duration. Intervals of 

extraneous speech that were unrelated to the task, as well as periods of laughing and 

coughing, were excluded.

Finally, articulation rate measured as syllables per second was used to assess speech motor 

processes. As described previously, articulation rate was calculated by counting the total 
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number of syllables produced in a speech sample (i.e., picnic scene) and dividing by the total 

articulation time, excluding pauses.

Data analyses

PCA with varimax rotation was performed on all speech fluency measures to determine an 

optimal, smaller set of speech production variables, which could explain the variance in the 

speech production data. Principal components were extracted with eigenvalues greater than 

one, representing a meaningful amount of the total variance of speech performance captured 

by a given component (Kaiser, 1960). The first extracted principal component (i.e., Factor 

1), which we propose as the best indicator of speech fluency in the study sample, was 

entered into a subsequent multiple linear stepwise regression analysis as the predicted 

variable. Descriptive statistics (means and standard deviations) were used to further 

characterize all variables, and correlation analysis was also used to investigate the strength 

of association between the various speech and language measures used in the study. To 

compare across variables with different scales, all variables were standardized (z-score) prior 

to the statistical analysis by subtracting the observed value from the mean and dividing by 

the standard deviation. Scores obtained from the NAVS (ASPT_A) were standardized 

according to testing protocols. Further, outcome values were reversed as needed before 

calculating standard scores, such that higher scores indicated more fluent speech across each 

measure. Finally, to illustrate the relationship between speech fluency (Factor 1) and 

significant mechanistic predictor variables (i.e., PNT scores, ASPT_A scores, speech 

entrainment response scores, and articulation rate), a composite fluency score was calculated 

by adding the z-scores for the speech production variables that loaded most heavily onto 

Factor 1 (see Figure 1). Because of possible overlap between the predicted variable (i.e., 

Factor 1) and predictor measure (i.e., change in number of different words) the analyses 

were repeated excluding the number of different words in the PCA and subsequent stepwise 

regression analysis. Significant differences were not obtained as a result of these analyses, 

and therefore the number of different words was retained in the final PCA analysis. 

Statistical analyses were performed using SPSS (Version 24) and a .05 alpha level.

Results

Principal component analysis

Participants’ performance on the speech and language measures varied considerably as 

evidenced by the high standard deviations (Table 1). Table 2 includes bivariate Pearson 

correlation coefficients showing that most of the speech production measures were related. 

In an effort to obtain a speech production variable that best explains fluency variation, all 

speech fluency variables were entered into a PCA. PCA with varimax rotation produced a 

two-factor solution, which when combined accounted for 88.8% of the total variance in 

participants’ speech production ability. Figure 2 shows the factors and their corresponding 

component loadings for each speech fluency variable. Factor 1 accounted for 66.5% of 

variance in speech performance with the variables of speech rate (.969), the number of 

syllables (.938), and the number of different words (.939) loading most heavily. Factor 2 

accounted for 22.4% of variance in speech performance. The speech fluency variables that 

loaded most heavily on Factor 2 were the number of silent pauses (.961) and mean silent 
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pause duration (.652). These results suggest a notable dissociation between speech output 

units and their overall speech timing (i.e., number of words, number of syllables, speech 

rate) and pausing characteristics (i.e., silent pause frequency and duration). Because more 

than half of the variance in speech performance was accounted for by the first extracted 

component, Factor 1 was henceforth labelled “speech fluency” and was entered as the 

predicted variable in the regression analysis, below.

Stepwise regression results

Table 2 also reports the correlations among the mechanistic predictor variables of speech 

fluency. Although many of these variables were significantly correlated, multicollinearity 

was not observed, as indicated by variance inflation factor values that were no greater than 

2.007, suggesting minimal measurement redundancy among the independent variables 

(Cohen, Cohen, West, & Aiken, 2003). Thus, all variables were retained and were entered as 

predictors of speech fluency (i.e., Factor 1). As indicated in Table 3, four significant models 

emerged. Model 1, which accounted for almost 70% of the variance in speech fluency, 

included speech entrainment response as the best predictor of speech fluency, F(1, 33) = 

72.71, p < .001, R2 = .68. Model 2 included speech entrainment response and articulation 

rate, F (1, 32) = 7.98, p < .01, R2 = .75. Model 3 included speech entrainment response, 

articulation rate, and ASPT_A, F(1, 31) = 4.66, p < .05, R2 = .78. Finally, Model 4 included 

speech entrainment response, articulation rate, ASPT_A, and PNT scores, F(1, 30) = 5.50, p 
< .05, R2 = .81. Beyond speech entrainment response, articulatory rate accounted for an 

additional 6% of variation in speech fluency. Beyond speech entrainment response and 

articulation rate, syntactic processing (ASPT_A) accounted for 3% of the variation. Lexical 

retrieval (PNT) also accounted for an additional 3% of the variance in speech fluency 

beyond speech entrainment response, articulation rate, and syntactic processing. The 

measure of semantic processing (PPTT) was not a significant predictor of speech fluency for 

any model. Figure 1 illustrates the relationship between speech fluency and the significant 

mechanistic predictors of speech fluency that emerged in the regression analysis.

Discussion

The primary purpose of this study was to investigate the underlying mechanistic factors that 

cause non-fluent speech in aphasia. Multiple stepwise linear regression analysis revealed 

four significant speech fluency prediction models. The fourth significant model was 

comprised of all predictor variables, except for semantic processing. Participants’ speech 

entrainment response was the greatest independent predictor of speech fluency. When 

compared to spontaneous speech, we suggest that speech entrainment response gauges 

efference copy intactness. In the paragraphs below, findings from the PCA and the 

regression analyses are considered, followed by theoretical and clinical implications.

PCA indicated that a combination of reduced overall speech timing (i.e., speech rate) and 

quantity of speech (i.e., the number of syllables and different words) best represented non-

fluent speech during spontaneous picture descriptions. Similar studies investigating speech 

fluency patterns and language characteristics revealed that reduced mean length of 

utterances, number of conjunctions and auxiliary verbs, and the number of words produced 
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per minute as well as speaking rate also contribute to reduced speech fluency (e.g., 

Vermeulen et al., 1989; Wagenaar et al., 1975). Although these prior studies utilized similar 

data reduction techniques, the design of these studies and the current study differed. In the 

current study, PCA with varimax rotation minimized redundancy among fluency measures to 

determine a single factor reflecting non-fluent speech in the study cohort for the regression 

analysis. In contrast, previous studies determined the underlying language impairment based 

on subgroups of speech and language characteristics extracted from PCA (e.g., Vermeulen et 

al., 1989; Wagenaar et al., 1975). The current study also focused on quantitative measures of 

speech fluency, rather than on subjective measures of speech flow and language 

characteristics. Nonetheless, the current results are in line with previous studies suggesting 

that overall reduced speech timing and quantity of speech may best describe speech fluency 

in patients with non-fluent aphasia variants.

The current participant sample was heterogeneous concerning aphasia presence, type, and 

severity. Participants also varied concerning the presence of apraxia of speech and dysarthria 

characteristics. To better understand the nature of these speech characteristics and how they 

differed between non-fluent and fluent aphasia variants, a qualitative post hoc analysis was 

conducted. Participants classified with non-fluent speech variants produced slower speech 

rates, fewer different words, and fewer syllables. Although it is not clear what behavioural 

factors contributed to speech fluency, problems with planning motor control and 

neuromuscular involvement probably contributed to these speech characteristics, in addition 

to cognitive–linguistic deficits. The finding that participants classified with non-fluent 

speech variants produced slower speech rates, fewer different words, and fewer syllables 

also supports extant studies suggesting that a single measure of speech production may not 

wholly indicate the nature of fluency impairments in aphasia (Feyereisen et al., 1991; Poeck, 

1983).

When predicting speech fluency from mechanistic measures of lexical, grammatical, and 

articulatory processing as well as speech entrainment response, a significant regression 

model that accounted for 81% of the variance was obtained. Although measures of lexical, 

grammatical, and articulatory processing abilities separately accounted for a small, yet 

significant proportion of the variance in speech fluency, the greatest amount of variance was 

clearly attributed to participants’ speech entrainment response, which independently 

explained 68% of the variance in speech fluency. When the regression analysis was repeated 

excluding speech entrainment response, articulatory (54%) and grammatical (7%) 

processing abilities were independent significant predictors of speech fluency and together 

accounted for a somewhat modest portion of the variance, 61%. To explore the impact of the 

overall length of a given speech sample, we replaced the number of different words in the 

PCA with type token ratio and repeated the regression analysis again. Although variables 

were to some extent reordered, similar results were obtained. That is, regression results 

indicated that 63% of the variance in speech fluency was accounted for by participants’ 

speech entrainment responses when type token ratio was used versus 68% of the variance 

indicated in the initial PCA analysis that used the number of different words.

Speech production and monitoring requires internally generated efference copies of speech 

motor commands projected to the auditory system in order to detect errors between intended 
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motor commands and actual speech feedback (Hickok, 2012; Houde & Nagarajan, 2011). 

Patients with damage to the left inferior frontal gyrus, especially pars opercularis, speak 

more fluently during speech entrainment as indexed by an increase in the number of 

different words produced per minute during speech entrainment compared to that during 

spontaneous speech (Fridriksson et al., 2015; Fridriksson et al., 2012). Given that 

participants’ speech entrainment response explained 68% of the variance in speech fluency, 

impaired speech fluency post stroke is probably a consequence of a degraded internal speech 

production monitoring mechanism in many speakers with aphasia. Thus, results suggest that 

what these patients may lack is an online model, an efference copy, to which they can match 

their speech production (Fridriksson et al., 2012; Hickok et al., 2011).

According to both the DIVA and SFC models of speech production, two separate but 

interacting feedforward and feedback mechanisms make up the system required to provide 

online auditory and proprioceptive feedback necessary to maintain fluent speech (e.g., 

Guenther et al., 1998; Hickok et al., 2011). The current study was not designed to 

differentiate between the two models, but rather to test the efference copy mechanism that is 

now part of contemporary models of normal speech production. That is, both of these speech 

production models imply that absent or degraded efference copies would compromise the 

efficiency of the sensory feedback used to correct motor commands, because errors in 

initiation or actual production cannot be detected without accurate access to speech sound 

targets. The finding that the integrity of efference copy, as inferred from participants’ 

response to speech entrainment relative to baseline (spontaneous speech), was a significant 

predictor of fluency in post-stroke aphasia supports this idea. Because most participants with 

non-fluent aphasia variants had co-occurring apraxia of speech and/or dysarthria, results also 

probably reflect degraded neural projections supporting feed-forward motor plans and 

outgoing motor commands, respectively.

Speech fluency is an important construct in the treatment of aphasia, as several speech 

production problems may contribute to decreased fluency following stroke (Gordon, 1998). 

For example, lexical retrieval or syntactic deficits may impact speech rate. However, which 

linguistic domains most strongly impact speech fluency in aphasia is not well understood. 

Although it is inherently challenging to determine the predominant underlying cause 

contributing to non-fluent speech on which to focus therapeutic efforts (Gordon, 1998), the 

current findings may have important clinical implications. For example, results suggest that 

the generation of efference copies or forward predictions, which may be critical for fluent 

speech production, may form a crucial mechanism to target in therapy. To the extent that 

greater change in the number of different words produced during speech entrainment 

compared to picture description predicted non-fluent speech (negative relationship, see 

Figure 1A), our findings further support therapeutic strategies utilizing external gaiting 

mechanisms to help initiate and monitor the flow of speech (e.g., speech entrainment, 

melodic intonation therapy, mirror therapy). In turn, this type of therapy may make it 

possible for patients with chronic non-fluent speech (with or without comorbid speech 

deficits) to practise speaking more fluently and thereby strengthen the generation and use of 

efference copies in speech motor control.
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Limitations, future directions, and conclusion

Silent pause frequency and duration measures primarily loaded on to a second extracted 

principal component, which when combined explained the remaining 22.4% of the variance 

among speech fluency measures. It is important to note that speech rate was calculated using 

the total sample duration including pause time, and as a result Factor 1 of the PCA, to some 

extent, accounted for pause time. However, pause characteristics obtained during connected 

speech post stroke may implicate independent neurological processing deficits. Thus, future 

studies should investigate the underlying cognitive and linguistic mechanisms predicting 

pausing patterns in aphasia. Another factor to consider when interpreting results of the 

present study is that the general pattern of predictive factors for non-fluent speech was based 

on group data. Thus, although our results identified a pattern of predictive factors that are 

likely to explain non-fluent speech in many stroke survivors, individual stroke survivors may 

still present with non-fluent speech that may not be solely attributed to impaired efference 

copy. For example, some participants with very severe apraxia of speech do not respond 

positively during speech entrainment (Fridriksson et al., 2012). This finding suggests that 

therapeutic or compensatory strategies targeting degraded efference copy may be 

contraindicated. In these cases, strategies targeting motor planning may be pursued, since 

motor planning itself is not dependent on an efference copy.

In conclusion, the results of this study suggest that impaired efference copy may play a 

significant role in speech fluency independent of lexical, grammatical, and articulatory 

processing deficits following stroke, at least when operationally defined as the change in the 

number of different words produced during speech entrainment compared to picture 

descriptions. This does not diminish the significant contributions of lexical, grammatical, 

and articulatory processing deficits to speech fluency. Rather, the results highlight the 

complex relationship between the underlying linguistic processes required for fluent speech 

production and the nature of speech production characteristics. Although it remains a 

clinical challenge to determine the most salient factors contributing to non-fluent aphasia on 

which to focus therapeutic efforts, the results of this study also appear to suggest that speech 

entrainment ability in comparison to spontaneous speech may be an estimation of efference 

copy intactness. Thus, speech entrainment ability may help to focus therapeutic strategies for 

patients with chronic non-fluent aphasia. However, additional studies are needed to more 

firmly establish the relationship between non-fluent speech and metrics reflecting patients’ 

ability to initiate or to monitor speech post stroke.
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Figure 1. 
The relationship between speech fluency factor-based scores for participants with data in a 

given neurological testing domain. NAVS = Northwestern Assessment of Verbs and 

Sentences.
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Figure 2. 
Loadings of each speech fluency measure on factors extracted from the rotated principal 

component analysis (PCA).
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Table 1

Descriptive statistics for speech fluency and mechanistic predictor variables.

Measures M SD

Speech fluency variables

 Speech rate (syll s−1) 1.52 0.85

 Number of syllables 158.73 101.32

 Number of different words 63.75 39.54

 Number of silent pauses 42.63 15.06

 Mean silent pause duration (s) 1.44 0.88

Mechanistic variables

 Philadelphia Naming Test (Lexical) 85.38 59.58

 Pyramids and Palm Tree Test (Semantic) 47.35 3.71

 Northwestern Assessment of Verbs and Sentences–Argument Structure (Grammatical) 0.72 0.38

 Speech entrainment compared to spontaneous speech (Efference copy) −0.24 0.59

 Articulation rate (Articulatory) 3.40 0.79

Note: syll = syllable.
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